Front Basin Infiltration Analysis based on a 100-yr Storm

Prepared for Prop. Car Wash - 593 Washington Street - Middletown, CT 6/16/21

Calculate proposed impervious surfaces and weighted 'c' value:

Proposed Area		Area		c' Value
Rooftop		0	sf	0.90
Paved		12890		0.90
Lawn		5770		0.30
	Total	18660	sf	0.71

Calculate increase in runoff due to additional impervious surfaces:

Q = c * I * A where Q = peak flow, c = runoff coefficient, I = intensity (in / hr) & A = area (sf)

For this analysis, the 100-yr storm event is examined:

Existing 'c' =	0.2	
Proposed 'c' =	0.71	
Difference in 'c' =	0.51	
[=	7.1	in / 24 hrs
A =	18,660	sf

Note: Intensity calculation was calculated by assuming a 100-yr storm, 24 hour period rainfall of 7.1 in. falling in a 24 hr period.

Calculate infiltration and storage capability of Rain Garden

Surface Area:

$$=$$
 31 ft x 82 ft $=$ 2542.0 sq.ft.

Percolation Rate:

$$=$$
 20 min / in $=$ 0.25 ft / hr

Note: Percolation rate taken from actual perc tests in location of proposed infiltration.

Absorption:

Storage:

Total Storage & Absorption (A_T) :

Check A_T vs. Q:

- = (5630.655 cf / 24 hrs) / (21607 cf / 24 hrs)
- = 26.1% Rain Garden Utilization for 100-year Storm, 24-hr Event Rain Garden Can Handle Over 100% of Design Flow

Water Quality Volume for Stormwater Retention Basin (front) 593 Washington Street - Middletown, CT 6/16/21

Water Quality Volume:

$$WQV = (1")(R)(A)$$
12

where:

WQV = water quality volume (ac-ft)

R = volumetric runoff coefficient = 0.05 + 0.009 * I

// I = percent impervious cover

A = site area in acres

For Area draining to Detention Pond:

l = 68.11 %

(calculated based on proposed conditions)

R = 0.05 + 0.009 * 68.11 = 0.66

A = 0.4304 acres

WQV = [(1) (0.66) (0.4304)] / 12

WQV = 0.024 ac-ft

 $WQV = 1031 \text{ ft}^3$

Sediment Forebay Volume Required:

(10% WQV Required)

Storage Volume of Forebay

Elevation	Contour Area	Incremental Storage	Cumulative Storage
0	0		
0	0	0	
0	0	0	0

WQV Provided in Forebay:

0

(0% WQV)

Therefore, sufficient volume has been provided in regards to Water Quality Volume (WQV.)

Total Storage Volume of Basin below Outlet (Including Forebay)

Elevation	Contour Area	Incremental Storage	Cumulative Storage
17	615		
18	912	764	764
19	1,260	1,086	1,850
19.5	1,465	681	2,531

WQV Provided in Basin:

2,531

245% WQV

Therefore, sufficient volume has been provided in regards to Water Quality Volume (WQV.)

Rear Basin Infiltration Analysis based on a 100-yr Storm

Prepared for Prop. Car Wash - 593 Washington Street - Middletown, CT 6/16/21

Calculate proposed impervious surfaces and weighted 'c' value:

Proposed Area		Area		c' Value	
Rooftop		4958	sf	0.90	
Paved		12517		0.90	
Lawn		9665		0.30	
	Total	27140	sf	0.69	

Calculate increase in runoff due to additional impervious surfaces:

Q = c * I * A where Q = peak flow, c = runoff coefficient, I = intensity (in / hr) & A = area (sf)

For this analysis, the 100-yr storm event is examined:

Existing 'c' =	0.2	
Proposed 'c' =	0.69	
Difference in 'c' =	0.49	
i=	7.1	in / 24 hrs
A =	27,140	sf

Note: Intensity calculation was calculated by assuming a 100-yr storm, 24 hour period rainfall of 7.1 in. falling in a 24 hr period.

Calculate infiltration and storage capability of Rain Garden

Surface Area:

= 50 ft x 92 ft = 4600.0 sq.ft.

Percolation Rate:

= 20 min / in = 0.25 ft / hr

Note: Percolation rate taken from actual perc tests in location of proposed infiltration.

Absorption:

= 4600 sf / unit * 0.25 ft / hr * 24 hrs = 27600 cf / 24 hrs

Storage:

 $= 50 \text{ ft } \times 92 \text{ ft } \times 2.5 \text{ ft}$ = 11500.00 cf

Total Storage & Absorption (A_T) :

= (27600 cf / 24 hrs) + (11500 cf) = 39100 cf / 24 hrs

Check A_T vs. Q:

Q= 7,868 cf / 24 hrs A_T= 39100 cf / 24 hrs

- = (7868.33833333333 cf / 24 hrs) / (39100 cf / 24 hrs)
- = 20.1% Rain Garden Utilization for 100-year Storm, 24-hr Event Rain Garden Can Handle Over 100% of Design Flow

Water Quality Volume for Stormwater Retention Basin (rear) 593 Washington Street - Middletown, CT 6/16/21

Water Quality Volume:

$$WQV = (1")(R)(A)$$
12

where:

WQV = water quality volume (ac-ft)

R = volumetric runoff coefficient = 0.05 + 0.009 * I

// I = percent impervious cover

A = site area in acres

For Area draining to Detention Pond:

// I = 73.10 % (calculated based on proposed conditions)

R = 0.05 + 0.009 * 73.1 = 0.71

A = 0.6256 acres

WQV = [(1) (0.71) (0.6256)] / 12

WQV = 0.037 ac-ft

 $WQV = 1612 \text{ ft}^3$

Sediment Forebay Volume Required:

 $V = 0 \text{ ft}^3$

(10% WQV Required)

Storage Volume of Forebay

Elevation	Contour Area	Incremental Storage	Cumulative Storage
0	0		
0	0	0	
0	0	0	0

WQV Provided in Forebay:

0

(0% WQV)

Therefore, sufficient volume has been provided in regards to Water Quality Volume (WQV.)

Total Storage Volume of Basin below Outlet (Including Forebay)

Elevation	Contour Area	Incremental Storage	Cumulative Storage
17	3,845		
18	4,442	4,144	4,144
19	5,075	4,759	8,902
19.5	5,380	2,614	11,516

WQV Provided in Basin:

11,516

714% WQV

Therefore, sufficient volume has been provided in regards to Water Quality Volume (WQV.)